Homework

November 11, 2019

1 Lecture 4

1. Consider a function $v(x)$ which is strongly convex with constant 1 on a convex set X w.r.t. general norm $\|\cdot\|$. Define a function $V(x, z)=v(z)-$ $(v(x)-\langle\nabla v(x), z-x\rangle)$. Consider iterates

$$
x_{t+1}=\arg \min _{x \in X} \gamma_{t}\left\langle\nabla f\left(x_{t}\right), x\right\rangle+V\left(x_{t}, x\right)
$$

for minimization of a function f on the set X, such that $\left\|\nabla f\left(x_{t}\right)\right\|_{*} \leq M$ $\left(\|\cdot\|_{*}\right.$ - is the norm conjugate to $\left.\|\cdot\|\right)$ and $\max _{x, y \in X} V(x, y) \leq D^{2}$. Estimate the convergence rate of this algorithm, called Mirror Descent, repeating similar steps as in the proof of the convergence rate of subgradient descent.

